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Multicellular communities are perturbed  
in the aging human brain and Alzheimer’s 
disease
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Charles C. White5, Dylan I. Lee    2, Pallavi Gaur    2, Orit Rozenblatt-Rosen3,12, 
Feng Zhang    5,6, Esti Yeger-Lotem    4,7, David A. Bennett8, Hyun-Sik Yang    5,9,10, 
Aviv Regev    3,11,12, Vilas Menon    2,13 , Naomi Habib    1,13   
& Philip L. De Jager    2,5,13 

The role of different cell types and their interactions in Alzheimer’s disease (AD) 
is a complex and open question. Here, we pursued this question by assembling 
a high-resolution cellular map of the aging frontal cortex using single-nucleus 
RNA sequencing of 24 individuals with a range o f c li ni co pa th ologic 
characteristics. We used this map to infer the neocortical cellular architecture 
of 638 individuals profiled by bulk RNA sequencing, providing the sample 
size necessary for identifying statistically robust associations. We uncovered 
diverse cell populations associated with AD, including a somatostatin 
inhibitory neuronal subtype and oligodendroglial states. We further i  d e  nt  i f-
ied a   n et wo rk of multicellular communities, each composed of coordinated 
subpopulations of neuronal, glial and endothelial cells, and we found that two 
of these communities are altered in AD. Finally, we used mediation analyses to 
prioritize cellular changes that might contribute to cognitive decline. Thus, 
our deconstruction of the aging neocortex provides a roadmap for evaluating 
the cellular microenvironments underlying AD and dementia.

Over the past decade, our understanding of the molecular landscape 
of AD has advanced as new experimental and analytic methods have 
synergized to uncover the sequence of events that lead to AD dementia. 
While transcriptomic analyses have the power to capture the state of 
the target organ along disease progression, most previous large-scale 

efforts profiled RNA at the bulk tissue level (for example, refs. 1,2), aver-
aging expression measures across a diversity of cells, which obscured 
finer distinctions and contributions of each cell subtype. Recent studies 
that profiled single nuclei from brain tissue of healthy and AD indi-
viduals have uncovered large interindividual diversity and specific 
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Fig. 1 | A cellular–molecular map of the human aging DLPFC in 24 cognitively 
healthy and AD individuals. a, Overview of the experimental scheme and 
analysis plan. Twenty-four individuals with clinicopathologic characteristics 
were profiled by snRNA-seq to generate a cellular map of the aging DLPFC brain 
region, and used as input to our CelMod deconvolution algorithm to estimate 
cellular compositions in an independent set of 638 individuals with bulk RNA-
seq data. Network analysis uncovered cellular communities and cell subsets 
varying in a coordinated manner across individuals, and statistical modeling 
associated AD traits to cell subsets and to cellular communities. b, The 172,659 
nuclear cDNA libraries were generated from the 24 postmortem samples of the 

DLPFC brain region of aging individuals. We report the number of cell profiles for 
each individual, ordered by the four major archetypes of the aging population: 
reference (nonimpaired individuals with minimal AD pathology), resilient 
(cognitively nonimpaired with a pathologic diagnosis of AD), AD group (both 
clinical and pathologic AD) and clinical AD only (AD dementia with minimal AD 
pathology). c, UMAP embedding of 172,659 single-nucleus RNA profiles from 
the DLPFC brain region of 24 individuals; colored by cell type. d, Diversity of 
cell type proportions across individuals. The proportions of cell types, color 
coded as in c, for each individual (rows). Exc., excitatory; Inh., inhibitory; OPC, 
oligodendrocyte precursor cells.
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glial subsets as well as RNA signatures associated with AD3–7. However, 
limited sample size and the moderate number of nuclei per subject in 
such studies yields an incomplete picture of the architecture of the 
aging neocortex and limits the statistical power of association analyses. 
In addition, while most studies focus on a cell-intrinsic view, cellular 
interactions and dependencies between cell types in the brain remain 
under-explored but could play crucial roles in disease pathology.

Several key questions remain open: (1) How distinct is the cellular 
architecture of AD brains? (2) Are transcriptional changes in certain 
cell types coordinated with or independent of one another? (3) How do 
changes in the cellular architecture relate to the causal chain of events 
leading to AD? Addressing these questions currently requires several 
new tools, including methods to relate detailed maps of single-nucleus 
profiles from selected individuals to large cohorts of deeply pheno-
typed individuals with sufficient size to complete statistically robust 
association studies, as well as approaches that characterize both indi-
vidual cells and multicellular communities.

Here, we have deployed a combined approach that integrates 
single-nucleus RNA sequencing (snRNA-seq) profiling of the dorso-
lateral prefrontal cortex (DLPFC) tissue from a structured subgroup of 
24 well-characterized individuals, together with bulk RNA profiles of 
a statistically well-powered set of 638 individuals1. All individuals are 
participants in longitudinal studies of cognitive aging with prospective 
autopsy and structured cognitive and neuropathologic assessments 
(the Religious Orders Study (ROS) or the Memory and Aging Project 
(MAP))8–11. The 24 participants were chosen to capture neocortical 

cellular diversity across a range of clinicopathologic states, while the 
638 participants reflect the general distribution of characteristics 
seen in the older population, enabling robust statistical modeling 
(Fig. 1a). Our experimental strategy yielded an enhanced map of cell 
subtypes and cell states of the aging cortex3–5, which we extended with 
a computational approach, CelMod (Cellular Landscape Modeling by 
Deconvolution), to estimate proportions of cell populations across 
the 638 bulk RNA sequencing (RNA-seq) profiles. The 638 samples 
provided the statistical power to identify specific subpopulations of 
cells associated with the pathophysiology of AD, highlighting certain 
oligodendrocyte transcriptional programs and a relative decrease in 
somatostatin (SST) neurons. We also used our map to infer a network of 
coordinated multicellular communities across individuals, which may 
reflect microenvironments in the aging brain; two of these communi-
ties are anti-correlated and associated with both cognitive decline and 
tau pathology burden. Our model informs further investigations and 
therapeutic development by identifying those cellular factors that may 
most proximally and directly contribute to loss of cognitive function 
with advancing age and AD.

Results
A high-resolution cell atlas of the aging neocortex
To build a map of the aging DLPFC (BA9), we generated snRNA-seq 
profiles from 24 aged ROSMAP9,10 participants with deep cognitive and 
neuropathologic characterization (Supplementary Table 1). To sample 
a wide variety of cell states, we selected participants that represent four 
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Fig. 2 | Diversity of neuronal subtypes across layers in the aging DLPFC.  
a, Neuronal diversity in the DLPFC. Left, UMAP embedding of excitatory  
(74,999 cells, 10 clusters) and, right, inhibitory neuronal subtypes (24,938 cells, 
7 clusters), colored by clusters capturing distinct subtypes (n = 24 independent 
samples of men and women), annotated by known neuronal markers (Extended 
Data Fig. 2a) and mapped to previous annotations12. b, Neuronal diversity in the 
DLPFC includes neurons from the various cortical layers. UMAPs of neuronal 
subtypes colored by predicted cortical layers according to a classifier applied 
to annotated RNA profiles from the Allen Brain Atlas12 (Methods). c, Spatial 
transcriptomics using the Visium platform highlights layers in DLPFC slices 

using cortical neuronal markers (RORB, CUX2, TOX, PVALB). d, Proportion of SST 
GABAergic neuronal subtype varies in relation to cognitive decline. Box plots of 
the proportions of three GABAergic subtypes (out of total GABAergic neurons) 
are shown across the four major archetypes of the aging population: reference 
group, resilient, clinical and pathological AD, and clinical AD only (n = 24 
independent samples, 6 per group). For box plots, the bottom and upper borders 
show the first and third quartiles. The central line indicates the median. The 
whiskers are extended to the extrema values (without accounting for outliers). 
Dots show individual samples.
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major archetypes of the aging population with diverse pathological and 
clinical manifestations (Fig. 1a and Supplementary Table 1; 6 individuals 
per group, 50% men/women): two groups of cognitively nonimpaired 
individuals with either minimal (reference group) or high (resilient) AD 
pathology, and two groups of individuals diagnosed with AD dementia 
with either high (AD group) or minimal AD pathology (clinical AD only). 
We retained 172,659 DLPFC nuclear transcriptomes for analysis, with 
an average of 7,194 nuclei per participant after quality control (Fig. 1b, 
Extended Data Fig. 1a and Methods).

Unsupervised clustering identified distinct groups of nuclei 
spanning all eight major expected cell types (Fig. 1c,d, Extended Data 
Fig. 1 and Supplementary Table 2), which we further analyzed sepa-
rately, identifying finer distinctions in cellular diversity (Figs. 2 and 3, 
Extended Data Figs. 2 and 3 and Supplementary Tables 2 and 3).

Among neurons, we identified ten excitatory (glutamatergic) 
and seven inhibitory (GABAergic) subsets (74,999 and 24,938 nuclei, 
respectively; Fig. 2a and Extended Data Fig. 2a–c), capturing the diver-
sity of the neocortex. Each subset expressed unique marker genes, 
such as the known inhibitory subtype markers SST (Inh.3 cluster) or 
parvalbumin (PVALB) (Inh.1) (Extended Data Fig. 2a). Our clusters 
aligned with previously annotated neuronal subtypes12 (Methods and 
Fig. 2a) found in different cortical layers (Fig. 2b), which we confirmed 
by spatial transcriptomics (Fig. 2c and Extended Data Fig. 2d). Notably, 
the relative proportions of the SST (Inh.3) neuronal cells were nominally 
lower in the AD group of individuals (Fig. 2d), although the sample size 
of our single-nucleus data was underpowered for statistical analysis.

Glial and endothelial cell states in the aging neocortex
The 2,837 microglial nuclei were partitioned into five major subsets 
(Fig. 3a–c and Extended Data Fig. 3), and they mapped clearly to previ-
ously defined subsets derived from single-cell RNA-seq of live human 
microglia from the DLPFC7 (Extended Data Fig. 4a). Subsets were 
annotated as: surveilling (Mic.1), stress response/anti-inflammatory 
(Mic.2), enhanced redox (Mic.3), interferon-response (Mic.4) and pro-
liferative (Mic.5) microglia. Mic.2 aligned with two different reactive 
states seen in the living microglia7 (Extended Data Fig. 4a), probably 
due to the smaller number of captured nuclei (compared with cells). 
However, our snRNA-seq data identified all of the RNA signatures (sub-
sets) present in live sorted microglia, suggesting that neither isolation 
protocol (sorting of live cells or preparation of nucleus suspensions 
from frozen tissue) misses microglial states. Finally, despite previously 
reported differences in microglial RNA profiles13,14, the nucleus-derived 
data captured expected microglial markers (for example, SPP1, APOE, 
TMEM163; Fig. 3b).

The astrocytes (29,486 nuclei) included five major subsets 
(Fig. 3d–f and Extended Data Fig. 3), annotated as: homeostatic 
protoplasmic-like (Ast.1), nonhomeostatic (Ast.2; reactive markers 
GFAP, SERPINA3 (ref. 15)), interlaminar-like astrocytes (Ast.3; reactive 
markers GFAP, ID3 (ref. 15), meningeal/fibrous marker CD44 (ref. 16) 
and endfeet marker AQP4 (ref. 17)), stress (Ast.4; S100A6, MT1A) and 
interferon-responding (Ast.5; IFI44L, IFI6, detected in two individu-
als) (Fig. 3e,f). We validated the position of Ast.3 in proximity to the 
meninges by spatial transcriptomics (Fig. 3g and Extended Data Fig. 5).  
Notably, Ast.4 showed expression of genes previously proposed 
to have higher levels in AD in the human cortex (COL5A3, PDE4DIP 
(ref. 6), Extended Data Fig. 4b) and this population is enriched for 
AD genes (Q < 0.05, hypergeometric test; Fig. 3f ). Ast.2 showed 
high expression of genes suggested to be reduced in AD (SERPINA3, 
Extended Data Fig. 4b). While both Ast.2 and Ast.3 expressed the 
reactive marker GFAP (Fig. 3e), they each contained genes involved in 
distinct pathways; for example, TGF-β signaling in Ast.2 and amyloid 
fibril formation in Ast.3 (Q < 0.05; Fig. 3f).

Endothelial cells (2,296 nuclei) included six major subsets, match-
ing recently defined subsets18 (Fig. 3h and Extended Data Fig. 3e). They 
were annotated as: capillary (End.1, End.2 and End.3), venous (End.4), 

arterial (End.5) and smooth muscle (End.6) cells. Each subset of nuclei 
was associated with distinct pathways (Q < 0.05, hypergeometric test; 
Fig. 3i), specifically, End.2 with various stress response pathways and 
AD (Q < 0.05; Fig. 3i).

As oligodendrocytes (29,543 nuclei) exhibited gradients of expres-
sion without clearly discrete boundaries, we applied topic modeling19–22 
to recover gene programs (called topics) based on covariation patterns 
of gene expression across cells (Methods). We found four major topics 
in oligodendrocyte nuclei, annotated by highly scoring genes (based 
on the Kullback–Leibler divergence21; Fig. 3j). For example, the cellular 
adhesion protein (SVEP1 (ref. 23)) was highly weighted in topic Oli.1, 
while a susceptibility gene for late-onset AD—clusterin (CLU)24—was 
highly weighted in Oli.4. Further, Oli.4 and Oli.2 topics included genes 
(for example, QDPR) previously reported to have higher expression in 
cortical oligodendrocytes in AD6, while Oli.1 and Oli.3 included genes 
(for example, MOG) previously reported to have lower expression in 
AD (Extended Data Fig. 4b). Finally, oligodendrocyte programs are 
distributed differently among the four archetype groups of individu-
als (Fig. 3j); however, the small sample size hinders robust statistical 
evaluation of this observation.

We could not detect robust subdivisions within oligodendrocyte 
precursor cells and pericytes due to their small numbers. Overall, the 
cell population structure that we have defined in our data is consistent 
with earlier clustering of frozen nuclei and live cells3,4,6,25 (Extended 
Data Fig. 4c).

Inferred cortical cellular compositions in 638 individuals
Our 24 archetypal participants profiled by snRNA-seq cannot by them-
selves capture the substantial heterogeneity in the clinicopathologic 
characteristics of aging individuals, nor is their number sufficient for 
robust statistical associations. To overcome these limitations, we used 
the snRNA-seq census of the cellular population structure to infer cell 
population proportions in bulk DLPFC RNA profiles from 638 ROSMAP 
participants1 (our 24 participants have the same bulk RNA profile; Sup-
plementary Table 1). We developed and applied our CelMod method, 
which builds and validates a model of cell subtype and state propor-
tions from participants with both snRNA-seq and bulk RNA-seq from 
the same tissue (Fig. 4a). CelMod then infers the population structure 
in any bulk RNA profile. CelMod relies on a consensus of gene-wise 
regression models, with cross-validation to estimate accuracy (Meth-
ods and Fig. 4a). CelMod is sensitive enough to detect the proportions 
of cell subsets (subtypes and states) within each broad cell class, and, 
beyond discrete cell populations, it can also determine the relative 
contributions of continuous expression programs (for example, top-
ics). We applied CelMod at the broad cell class level and separately on 
subtypes within each broad class (Fig. 4a), inferring relative proportions 
of each of the 33 cell subsets and four oligodendrocyte topics in bulk 
RNA-seq from the 638 ROSMAP participants with bulk RNA-seq data1 
(Supplementary Table 4).

CelMod accurately inferred proportions of most snRNA- 
seq-derived cell types, cell subsets and programs (topics) as vali-
dated by fivefold cross-validation to the matched, empirically 
measured proportions from snRNA-seq (mean r = 0.90, stdev = 0.05 
across cell types and mean r = 0.86, stdev = 0.09 across cell subsets;  
Fig. 4b,c, Extended Data Fig. 6a,b and Methods). We also validated 
CelMod prediction accuracy by applying it to bulk data from pre-
frontal cortex (BA10) of 48 donors, and comparing the estimates 
with previously published snRNA-seq-derived proportions from the 
same donors3; this showed that CelMod could accurately predict cell 
subtype and state proportions on independent datasets and expand 
the resolution of the published annotations (Fig. 4d, Extended Data 
Fig. 6c,d and Methods). CelMod showed higher accuracy in predict-
ing snRNA-seq-derived cluster proportions compared with previ-
ous methods26–28 (Methods and Extended Data Fig. 6e). There was 
also agreement in the proportions inferred by CelMod and matched 
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transcriptomics using the Visium platform showing the position of Ast.3 cells by 

marker gene ID3 and reactive astrocytes marker GFAP. Oligodendrocyte marker 
MBP marks the white matter border. Bottom right, schematic annotation of the 
tissue. Additional tissues and genes are shown in Extended Data Fig. 5. j, Continuum 
of expression programs in oligodendrocyte cells inferred by topic modeling19–22. 
For each topic model panel: UMAP embedding of oligodendrocyte cells, colored 
by the weight of each topic per cell (right); the top scoring genes (colored by the 
score), computed as the Kullback–Leibler (KL) divergence between the expression 
level and the topic’s weight across cells (red color scale, left); and the cumulative 
distribution function of topic weights for cells split by the sample of origin to four 
major archetypes of the aging population (as in Fig. 2d).
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immunofluorescence data (from the contralateral fixed hemisphere29) 
in 48 ROSMAP participants (Methods), for neurons (NeuN+, r = 0.40) 
and reactive astrocytes (reactive marker GFAP+, r = 0.49) (Fig. 4e). We 
further validated the estimated CelMod proportions from matching 
proteomics measurements of key markers across 196 individuals (with 
bulk proteomics30 from the DLPFC), focusing on key cell subsets and 
topics (Methods, Fig. 4f and Extended Data Fig. 6d). For selected cell 
subsets, we confirmed the correlation of protein levels of marker genes 
across 196 individuals with both bulk RNA and protein data, showing 
correlations between the CelMod estimated proportions and the pro-
tein levels of the selected marker: the IGFBP7 protein for Ast.2, CD44 
for Ast3, S100A6 for Ast.4, QDPR for Oli.4, SST for Inh.3 (R = 0.18–0.3). 
These correlations were in the same range as the correlations between 
bulk RNA and protein levels31 for these markers (R = 0.15–0.35; Fig. 4f). 
Of note, some cell subsets had lower prediction accuracy, including the 
rare Ast.5 enriched for interferon response and the redox-associated 
Mic.3 (Fig. 4b–f). Nonetheless, we include all inferred subsets in the 
next steps of the analysis, as poor inference due to noise would be 
unlikely to create false positive associations.

Cellular compositions are associated with AD-related traits
With this validated set of inferred cell subset proportions in 638 indi-
viduals, we tested for association of cell subset proportions with three 
central AD-related traits from the deep ante- and post-mortem char-
acterization of ROSMAP participants8–10: quantitative measures of 
(1) β-amyloid and (2) tau proteinopathy, which are the two defining 
pathologic characteristics of AD; as well as (3) the slope of aging-related 
cognitive decline over up to 20 yr before death, which captures the 
progressive cognitive impairment that leads to dementia. β-amyloid 
generally accumulates earlier than tau proteinopathy, and tau burden 
is more closely associated with cognitive impairment and dementia32,33 
(Extended Data Fig. 6d).

Linear regression analysis (with correction for age, RNA integ-
rity (RIN) score and sex; Methods) revealed statistically significant 
associations (false discovery rate (FDR) < 0.01) between the propor-
tions of neuronal and glial cell subsets (as measured within each cell 
class) and the AD-related traits (Fig. 4g–i and Supplementary Table 5). 
Most cell subsets/topics associated with tau pathology also showed 
significant associations with cognitive decline (FDR < 0.01; Fig. 4g): 
a positive association for Oli.4, Ast.4, Mic.3 and End.2; and a negative 
association for Oli.1, Inh.3 (SST+), End.4 and Ast.2 (GFAP+ SERPINA3+). 
A few subsets were only associated with cognitive decline: End.1 with 
slow decline and Inh.1/7 with rapid decline (FDR < 0.01). On the other 
hand, Oli.2 was positively associated with tau pathology (FDR < 0.01) 
and only marginally associated with cognitive decline (FDR < 0.036). 
Further, proportions of several cell subsets were significantly asso-
ciated with β-amyloid pathology (FDR < 0.01), but not significantly 
associated with the rate of cognitive decline: a negative association 

for glutamatergic neuron subtypes Exc.4/5/6 (layer 4–5 pyramidal 
neurons), inhibitory neuron subtype Inh.6 (PTPRK+, inferred to be 
found predominantly in layer 4) and an endothelial subset (End.3); as 
well as positive associations with Ast.3 (GFAP+ CD44+), Exc.2 and Inh.2 
(Fig. 4i). These findings are consistent with the stronger association 
between tau (versus β-amyloid) pathology and cognitive decline32,33, 
and the fact that β-amyloid pathology is only partially correlated with 
tau pathology (r = 0.48; Extended Data Fig. 6f). Thus, while we found 
a range of strong cellular associations (FDR < 0.01) for β-amyloid and 
tau pathology, only some of these were marginally correlated with 
both pathologic features (FDR < 0.05, for example, Oli.1, End.2, Ast.4 
and Inh.3). The two pathologies therefore had a largely distinct set 
of associations with cell subtypes/states, consistent with our earlier 
report of distinct microglial transcriptional programs being associated 
with amyloid and tau pathology29.

The associations with cognitive decline and tau pathology showed 
that the inferred oligodendrocyte topic Oli.1 (SVEP1+) appears to be 
more prominent in nonimpaired individuals while topic Oli.4 (QDPR+) 
was enriched in individuals with cognitive decline. In parallel, the rela-
tive proportion of inhibitory neuronal subtype Inh.3 (SST+) was higher 
in healthy individuals, in contrast to inhibitory subtype Inh.1 (PVALB+), 
which was relatively higher in individuals with cognitive decline  
(Fig. 4g–i). This suggests a potential vulnerability of SST+ GABAergic 
neurons in AD. Additional subsets that are associated with cognitive 
decline include End.2 and Ast.4, which were enriched for genes related 
to stress response pathways such as oxidative stress (Fig. 3f,i).

Although our single-nucleus dataset itself has limited statistical 
power, we still found a clear trend of correlations between the propor-
tions of certain cell subsets in the snRNA-seq data (n = 24, within each 
broad cell class) and cognitive decline, β-amyloid and tau burden  
(Fig. 4j and Extended Data Fig. 6g), which are consistent with our  
findings from the CelMod estimations in 638 samples.

Finally, we further validated the association between cell sub-
types/subsets/topics and AD traits using independent bulk RNA-seq 
profiles and proteomic measurements. Applying the CelMod model to 
an independent cohort of 106 bulk RNA-seq profiles (from the Mount 
Sinai Brain Bank (MSBB34) (Methods), we replicated many results, 
with consistent associations to both cognitive decline and tau burden 
for most cellular subsets (except for Ast.2, End.4 and Mic.5 subsets; 
Extended Data Fig. 6h). Separately, we used proteomic measurements 
of markers for key prioritized cell subsets in 400 ROSMAP individuals30. 
Consistent with our RNA-based analyses, we found that the SST protein 
(Inh.3 marker), IGFBP7 (Ast.2) and S100A6 (Ast.4) are correlated with 
cognitive decline and tau burden. QDPR (Oli.4) is associated with cogni-
tive decline, and CD44 (Ast.3 marker) is associated with amyloid burden 
(P < 0.01; Fig. 4k). The directions of these associations are consistent in 
the RNA- and proteome-based analyses. We found that, at the protein 
level, SST, IGFBP7 and S100A6 also associated with amyloid burden, 

Fig. 4 | Proportions of cell subsets are associated with AD traits in a cohort 
of 638 individuals. a, Scheme of the CelMod algorithm. Input: snRNA-seq-
derived signatures of cell types and subsets and expression programs, as well 
as their proportions across individuals. A two-step algorithm estimates cell 
subset proportions in bulk RNA-seq samples, training on matching samples 
using a fivefold cross-validation approach (Methods). b, CelMod estimated cell 
subset proportions (y axis) match snRNA-seq measured proportions (x axis) 
(n = 24 independent samples; additional subsets and cell types in Extended Data 
Fig. 6a,b). R, Spearman correlation. c, Spearman correlations of the CelMod 
estimated proportions and the snRNA-seq measured proportions for each cell 
subset (n = 24 individuals). d, Validations of CelMod in an independent dataset. 
Correlations of CelMod estimated proportions and snRNA-seq from a published 
dataset are shown3. e, Immunohistochemistry in DLPFC sections of 48 individuals 
(24 healthy, 24 with cognitive decline), stained for markers for neurons (anti-
NeuN, top) and reactive astrocytes (anti-GFAP, bottom). Left, representative 
immunofluorescence images. DAPI, nuclei. Scale bar, 100 µm. Right, Pearson 

correlation coefficients of CelMod and immunofluorescence-based estimations 
of proportions (out of the total number of cells) for all neurons and for GFAP+ 
astrocytes (Ast.2, Ast.3). f, Correlations of bulk cortica protein expression levels 
to CelMod estimates and to bulk RNA-seq in n = 196 individuals30. g–i, Association 
scores for the CelMod estimated proportions of all cell subsets (cell subtypes, 
states or topic models) to cognitive decline rate (g, x axis), tangle burden (h, x 
axis) and β-amyloid burden (i, x axis). Association score = −log(FDR) × sign(β), 
from multivariable linear regression analysis (Methods; n = 638 independent 
samples). Positively (purple) or negatively (turquoise) associated subsets are 
colored when statistically significant (FDR < 0.01). j, Correlation (color scale) 
of proportions of cell subsets from snRNA-seq to cognitive decline (n = 24 
independent samples). Associations to additional AD traits in Extended Data 
Fig. 6g. k, Correlation (color scale) of protein levels (rows) to rate of cognitive 
decline, β-amyloid burden and tangle burden measured in n = 400 individuals. 
**FDR < 0.01. Left bar, direction of association of the CelMod estimated 
proportion with the traits (purple, positive; turquoise, negative).
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and CD44 also positively correlated with cognitive decline and tangles 
(P < 0.01; Fig. 4k).

Multicellular communities of co-occurring cell subsets
Assessing the extent of interindividual variation in cell subset fre-
quency revealed differences within each of the cell classes separately, 
which was robust across the 24 snRNA-seq measurements and the 638 
CelMod inferred proportions (Fig. 5a,b and Supplementary Table 4). 
To further test how interindividual variation in cell subsets was coor-
dinated across all cell types, we calculated the Spearman correlation 
coefficient for each pairwise combination of cell subset or topic pro-
portions (where proportions are defined within a cell class; Fig. 5c), 
uncovering a covariation structure of cell subsets from multiple cell 
types captured by hierarchical clustering of these pairwise correlations 
(Fig. 5d,e and Methods). The covariation structures were significantly 
similar across the 24 empirically determined proportions (Fig. 5d) and 

the 638 inferred proportions (Fig. 5e, permutation test, P < 0.001, Fig. 5f  
and Methods), and they were confirmed in bulk RNA-seq profiles of 
106 individuals from the independent MSBB cohort with cell subtype 
proportions inferred by CelMod (Methods and Extended Data Fig. 7a).

The uncovered covariation structures suggest the existence 
of distinct multicellular communities in the aging human brain. To 
model those, we built a network of cell subsets, with connections 
between each pair of subsets (nodes) that are significantly correlated 
or anti-correlated (signed edges) (R > 0.4 or R < −0.4, with P < 0.05; 
Methods and Fig. 6a,b). These networks highlighted an underlying 
structure of cellular communities (connected components of posi-
tively correlated cell subsets) comprising multiple neuronal, glial 
and endothelial cell subsets or topics, along with strongly opposing 
communities (negatively correlated cell subsets between communi-
ties) (Fig. 6b). A similar architecture was detected in the 24 snRNA-seq 
measurements-derived network (Extended Data Fig. 7b).
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Fig. 5 | Covariation structure of cell subset proportions across 638 
individuals. a,b, Proportions of cell subsets across individuals in astrocytes 
and microglia. The frequency (out of total cells in the class, color scale) of each 
cell subset (columns) in each individual (rows): from snRNA-seq (n = 24, in a) or 
CelMod estimations (n = 638, in b). The cell subsets in b are ordered as in a.  
c, Scatter plots of selected pairs of cell subsets from different cell classes, showing 
high correlations between proportions of subsets (n = 638). d,e, Coordinated 
changes in proportions of cell states and subtypes across individuals. A heatmap 
of the pairwise Spearman’s correlation coefficients of the proportions of all cell 
states and subtypes across 24 individuals (snRNA-seq measurements, d)  

and in 638 individuals (CelMod estimated proportions, e). We found a structure 
of mixed correlated and anti-correlated cellular subsets of mixed cell types. 
f, CelMod estimated pairwise correlations of cellular populations (n = 638 
individuals) match the snRNA-seq measurements (n = 24 individuals). Similarity 
between the two correlation matrices (in d and e) is statistically significant 
(P = 0.001, by permutation test, one-sided; Methods). Histogram of the 
distribution of similarity scores ( Jennrich’s test45) of correlation matrices in 
10,000 random permutations of the cellular frequencies independently per cell 
type. Red, similarity score of the true matrices in d and e.
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We validated, at the protein level, the coordinated levels of cell 
subsets across individuals for subsets of different cell types using bulk 
proteomic data. Consistent with the two transcriptomic networks 
(CelMod estimated n = 638, and snRNA-seq measured n = 24), there 
were statistically significant correlations between the protein levels 
of signature genes of various cell subsets, validating the structure 
of two reciprocal communities: Ast.4, Oli.2, Oli.4 and Mic.3 (average 
R = 0.31); and Oli.3, Ast.2 and Inh.3 (average R = 0.41). There was also 
the expected anti-correlation between the two sets of cell subtypes 
(average R = −0.2). Notably, an additional correlation of Ast.2 and Ast.3 
signatures with Mic.3 emerged only in the proteomic data (Fig. 6c), 
highlighting the need for multiomic data in future studies.

Multicellular communities associated with cognitive decline
We next showed that our network captured a coordinated set of 
changes across cell types (Fig. 6b), as cell subsets associated with AD 
traits formed connected communities in our networks (Methods and  
Fig. 6d–f). The cognitive decline-associated subsets segregated into two 
anti-correlated communities, each composed of different highly inter-
connected neuro–glial–endothelial cell subsets: (1) the cognitive decline 
community consisting of all cell subsets whose proportions are associ-
ated with more rapid cognitive decline and high tau burden (P < 0.01; 
Methods), including Oli.4 (QDPR+), Ast.4 (S100A6+), Mic.3, End.2, and 
Inh.1 and Inh.7 subtypes (PVALB+); (2) the cognition nonimpaired com-
munity consisting of all cell subsets whose proportions were associated 
with slower cognitive decline and low tau pathology (P < 0.01), includ-
ing the Oli.1 signature, and the Inh.3 (SST+), Ast.2 (GFAP+ SERPINA3+) 
and End.1 subsets (Fig. 6d,e). For β-amyloid burden, the amyloid-low 
community included neuronal cell subsets that are negatively associ-
ated with β-amyloid burden: specifically, there was a loss of middle/
deep layer glutamatergic neuronal subtypes Exc.3–6 (predominantly 
layers 4–5) and the Inh.6 subtype (PTPRTK+, layer 4, P < 0.001; Fig. 6f). 
This was consistent with previous work reporting increased neuronal 
vulnerability associated with AD pathology in RORB+ pyramidal neu-
rons at middle/deep cortical layers25 (Figs. 2 and 4i and Extended Data  
Fig. 2a). As excitatory neuronal subsets largely formed two opposing 
connected components in the graph dependent on the cortical layer (lay-
ers 2–3 versus layers 4–6; Fig. 6b), we cannot exclude that our findings 
are driven by a dissection bias as we prepare samples for RNA extraction. 
However, this is unlikely as this association was captured independently 
by the single-nucleus and bulk RNA-seq (Fig. 5d,e and Extended Data 
Fig. 7a), and, notably, compositions of all other cell types were found 
to be independent of the cortical layer (Methods and Extended Data 
Fig. 7c). By a random permutation test, we also showed that subsets 
associated with each AD trait captured statistically significant (P < 0.01) 
connected components in the network, and reciprocal communities 
were significantly connected by negative edges (P < 0.01; Methods). 
We therefore identified several sets of coordinated cellular responses 
that are associated with distinct aspects of AD.

Shared pathways and signaling within the cognitive decline 
communities
The existence of cellular communities (Fig. 6) suggests shared function-
alities and distinct signaling between cells within each community35,36. 
We searched for shared pathways and for ligand–receptor interactions 
within and between the two opposing communities—the cognition 
nonimpaired (Inh.3, Oli.1, Ast.2, End.1, End.4) and cognitive decline 
(Inh.1, Inh.7, Oli.4, Ast.3, Mic.3, End.2) communities.

Examining the differentially enriched pathways across all cell 
subsets within each community, we found overlapping pathways within 
the cognition nonimpaired (n = 14); separately, we found more shared 
pathways within the cognitive decline community (n = 275) (hypergeo-
metric test, Q < 0.05, clustered pathways; Methods). Interestingly, the 
cognitive decline community cell subsets shared pathways related to 
known AD risk factors, including response to oxidative stress, hypoxic 
stress and DNA damage, as well as oxidative phosphorylation and neu-
rodegenerative diseases-associated genes (including AD) (Q < 0.05;  
Fig. 7a). On the other hand, the cell subsets within the cognition nonim-
paired community shared pathways related to axon development and 
cell–cell junctions, and synapses-related pathways (Q < 0.05; Extended 
Data Fig. 7d).

We also searched for ligand–receptor pairs (LRPs)37,38 that puta-
tively connect different cell subsets within and between the two com-
munities (Methods). We first identified all expressed LRPs (P < 0.05, 
permutation test, CellPhoneDB39), connecting one cell subset express-
ing the ligand with another cell subset expressing the receptor (Fig. 7b),  
finding the highest number of expressed LRPs connecting two sub-
sets within the cognitive decline community (1,005 expressed LRPs; 
Fig. 7b). Next, we searched for community-specific LRPs, defined as 
expressed LRPs in which at least the ligand or the receptor was differ-
entially expressed (FDR < 0.01; Fig. 7b,c and Extended Data Fig. 8a,b). 
We identified 384 cognitive decline community-specific LRPs, such 
as the LAMB2 gene, encoding Laminin Subunit Beta 2, expressed by 
End.2; and RPSA, encoding the Laminin Receptor 1, expressed by both 
Mic.3 and Oli.4 (FDR < 0.01; Fig. 7c). We also identified 181 cognition 
nonimpaired community-specific LRPs, such as FGF2, encoding the 
Fibroblast Growth Factor 2, expressed by Ast.2; and NRP1, encoding 
the receptor Neuropilin40, expressed in End.1 (FDR < 0.01; Fig. 7c). 
We further identified pairs of cell subsets statistically significantly 
enriched in LRPs (permutation test, P < 0.01; Methods and Fig. 7b): 
we found that most such pairs of cell subsets were within the cognitive 
decline community (7 of 12 for community-specific LRPs and 14 of 26 
for expressed LRPs; Fig. 7b).

AD-related traits are partially mediated by cell subsets
While our autopsy-based data cannot determine the causal chain of 
events leading to AD, modeling can propose a most likely scenario. 
To test whether cell proportion changes may mediate the association 
between AD pathologies and cognitive decline, we applied a causal 

Fig. 6 | Multicellular communities exist in the aging DLPFC brain region. 
a, Scheme of the computational framework for estimating multicellular 
communities: proportions of cell subsets across individuals within each cell 
type are calculated and combined, and pairwise correlations between all cellular 
subsets are computed. A multicellular network is derived from the pairwise 
correlations, associated with AD traits by statistical analysis, and connected 
components are annotated as cellular communities (Methods). b, A network of 
cellular subsets reveals coordinated variation across individuals in multiple cell 
types. Network of coordinated and anti-coordinated cell subsets (nodes). Edges 
between pairs of subsets with statistically significant correlated proportions 
across individuals (R > 0.4, two-sided P value threshold = 0.05, solid red line) 
or anti-correlated (R < −0.4, dashed blue line) based on CelMod proportions 
(n = 638). snRNA-seq-based network is shown in Extended Data Fig. 7b. Nodes 
are colored by the cell type and numbered by the subset as in Figs. 2a and 3a,d,h. 
c, Correlation patterns of proteomic30 expression of signature genes across cell 

subsets match CelMod estimates. For selected cell subsets, pairwise correlations 
of snRNA-seq proportions (n = 24, left), CelMod proportions (n = 638, middle) 
and average protein expression levels of signature genes (n = 400, right).  
d–f, Cellular communities are linked to AD-associated traits. Cellular network 
(as in b) of coordinated and anti-coordinated cell subsets (nodes), colored by the 
associations (multivariable linear regression, FDR 0.01) with AD traits (purple, 
positive; green, negative association; gray, nonsignificant) for: cognitive decline 
(d), tangles burden (e) and β-amyloid burden (f). Bottom, each bar represents the 
connectivity score (no. of positive edges − no. of negative edges)/potential edges 
between groups of cells according to their association to each trait, showing 
that cell subsets associated with AD traits are highly connected in the network. 
Statistical significance for the connectivity score was calculated based on 
random permutations (one-sided, not adjusted) (Methods): *P = 0.05, **P = 0.01. 
a, amyloid load; c, cognitive decline; t, tangles load; neg, negatively associated; 
pos, positively associated; neutral, not associated.
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modeling framework, aimed to align cell subset proportions along 
the widely assumed sequence of AD pathophysiology (Fig. 7d), which 
starts with β-amyloid accumulation, followed by tau with subsequent 
neurodegeneration and cognitive decline41–44 (consistent with our 
data; Fig. 4g–i).

We focused on the six tau-associated cell subsets that were also 
marginally associated with β-amyloid (P < 0.05, but FDR > 0.017): 
Inh.2, Oli.1, Oli.2, Ast.4, End.2, Inh.3 (SST). First, we tested three pos-
sible scenarios (Fig. 7d), where cell proportion changes are either 

(1) upstream drivers of β-amyloid levels; (2) mediators, downstream 
of β-amyloid but upstream of tau; or (3) downstream of tau. In each 
scenario, we tested the change in association between two variables 
once the third is added as a mediator. Ast.4, End.2, Inh.3 and Oli.1 
were predicted to be downstream of tau, as tau burden mediated 
most (>69%) of the β-amyloid–subset associations, with no statisti-
cally significant direct amyloid effect (P > 0.05) (Fig. 7e and Extended 
Data Fig. 8c). However, we predict that Oli.2 might be affected by 
both amyloid and tau, and Inh.2 is upstream of tau (Extended Data 
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Fig. 8c), suggesting that changes in these subsets may be occurring 
at an earlier stage of AD.

Next, as Ast.4, End.2, Inh.3 (SST+) and Oli.1 were positioned 
downstream of tau accumulation, we performed a second medi-
ation analysis to predict their contribution to cognitive decline  
(Fig. 7d,f ). Our analysis positioned all four subsets upstream of 

cognitive decline, as each of their proportions partially mediated the 
effect of tau on cognitive decline (2.7–7.0% of total effect) (Fig. 7f and 
Extended Data Fig. 8d). The proportions of the four subsets simul-
taneously explained 7.4% of the tau–cognition association, which 
is a small but meaningful fraction of the effect of tau proteinopathy 
on cognitive decline.
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Discussion
In this study, we constructed a cellular map of the neocortex, capturing 
cellular diversity and expression programs at high resolution (com-
pared with previous reports3,6; Figs. 1–3 and Extended Data Fig. 4),  
revealing insights about intra- and interindividual diversity in the 
aging brain (Fig. 5) and uncovering coordinated multicellular com-
munities associated with cognitive impairment and AD pathologies 
(Figs. 6 and 7). With our analytical method (CelMod), we expanded the 
estimated cellular landscapes from a selected set of 24 individuals to 
a random set of 638 individuals in the same aging cohorts (ROSMAP). 
Our approach can be readily applied to other tissue-level datasets, as we 
have demonstrated its deployment in a published snRNA-seq dataset 
of 48 individuals3 and in 106 bulk RNA-seq datasets of participants 
from an independent cohort (MSBB) (Fig. 4 and Extended Data Fig. 6).  
The inferred cellular composition data were statistically powered for 
disease association analyses, which uncovered observations such as 
a decrease in SST (Inh.3) GABAergic neuron proportions, validated by 
proteomics of the same brain region in 400 individuals, suggesting that 
SST neurons may be more vulnerable than other neuronal subtypes in 
AD (Figs. 4 and 6). Next, we applied our computational framework to 
capture a multicellular view of cellular environments and organiza-
tion, which led to the discovery of distinct cellular communities that 
we linked to AD-associated traits (Fig. 6).

In microglia, we found a good match between our snRNA-seq-based 
clusters and those found in single live microglial cells purified from 
fresh autopsy and surgically resected tissue7, addressing an important 
concern raised in an earlier study13. As a result, despite differences 
relating to the quantity, quality and nature of single-nucleus- and 
cell-derived RNA data, the same microglial subsets were captured in 
both datasets. Notably, the similarity in microglial diversity captured 
by live cells and frozen nuclei also substantially reduces the likelihood 
of artifacts from ex vivo manipulations.

Oligodendrocytes emerge as an interesting cell type for further 
evaluation for their strong association to AD (Fig. 4g–i). Oligodendro-
cytes also highlight the need to analytically accommodate the unique 
characteristics of each cell type (Fig. 3j). We represented their heteroge-
neity utilizing topic models19–22 to capture expression programs instead 
of discrete cell clusters, finding two programs strongly associated 
with tau pathology and cognitive decline, one positive (Oli.4) and one 
negative (Oli.1) (Figs. 4 and 6c).

A major innovation of our study is the definition of cellular com-
munities defined by correlated changes in the frequency of different 
cell subsets across individuals (defined within each cell class) and 
their association to AD traits (Figs. 6 and 7g). Within the cognitive 
decline cellular community, we found LRPs linking different cell subsets  
(Fig. 7b,c) as well as multiple shared pathways that are enriched in 
different cell subsets within the community. Many of these pathways 

relate to known risk factors for AD, offering a further form of validation 
from earlier studies (Fig. 7a and Extended Data Fig. 7d). Overall, these 
results fit within our conceptual understanding that AD is a distributed 
pathophysiologic process involving multiple interacting cell types. 
Spatial transcriptomic methods will help to resolve whether these 
communities represent colocalized cells or distributed communities 
responding to a shared signal.

One strength of our analyses comes from the ROSMAP cohorts 
that have detailed, quantitative clinicopathologic measures which 
enable resolving changes related to pathologies from those involved 
in cognitive decline. This is nicely illustrated by cell subsets associated 
with β-amyloid but not with cognitive decline, and leads us to prioritize 
as therapeutic targets four cell populations that, in our mediation mod-
eling, appear to contribute to the consequences of tau proteinopathy 
on cognitive decline.

Our study does have limitations: while we have statistically robust 
results due to CelMod estimates in bulk RNA-seq from 638 individu-
als, our small reference snRNA-seq dataset may not capture the full 
diversity of neocortical cells, especially in smaller cell populations 
such as microglia and pericytes. Moreover, we have a limited ability 
to reliably estimate the abundance of rare cell subsets such as Mic.3, 
End.4 and Ast.5. Further, while we have validated the estimated cel-
lular architecture and association to traits using histology, RNA and 
proteomics data, the associations are limited by the detection limits 
of each method and by differences between RNA and protein expres-
sion levels. Validation of our results in larger-scale snRNA-seq studies 
is necessary to ensure the robustness of our cellular map and is likely 
to resolve additional rare cell subsets that may be important in AD. 
Finally, when profiling postmortem brain tissue we do not directly 
measure the temporal links between cellular communities, appear-
ance of pathology and cognitive symptoms. Nonetheless, we explored 
this key issue using mediation analysis, a statistically rigorous method 
whose results suggest that the known link between tau pathology and 
cognitive decline is mediated in part through changes in the propor-
tion of specific cell subsets (Fig. 7e,f), proposing testable hypotheses 
for future studies.

Overall, our work highlights the importance of a unified view of the 
cellular ecosystems of the brain in the study of AD and other disorders, 
demonstrating how a network approach can uncover new insights, 
such as cellular communities each involved in different aspects of AD.
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Fig. 7 | The cellular environment of the AD and the cognitively nonimpaired 
brains. a, Shared pathways within the cognitive decline community. Enriched 
pathways (hypergeometric test, FDR Q < 0.05) in up-regulated genes within 
each cell subset, shared between at least three subsets within the community. 
Pathways clustered by shared genes (Methods). Nonimpaired community 
shared pathways are shown in Extended Data Fig. 7d. b, Increased LRPs 
between cell subsets of the cognitive decline community compared with the 
nonimpaired community. For each pair of cell subsets, showing the number 
of LRPs (colorbar, row, ligand; column, receptor) that are expressed (left) or 
differentially expressed in at least one of the subsets (right). Top and side bars, 
positive (purple) or negative (turquoise) association with cognitive decline, and 
the number of expressed LRPs (color scale). c, Examples of community-specific 
LRPs. For each LRP, marking the association to each pair of cell subsets with the 
cognitive decline community (purple) or the cognition nonimpaired community 
(turquoise) or no-association (gray). LRPs are associated to a community if the 
ligand and its receptor are positively differentially expressed in cell subsets 

within one community compared with the other. d, A scheme of underlying 
assumptions and four possible scenarios of the cell subset causal relationship 
with AD pathology and cognitive decline assessed by mediation analysis.  
e, Mediation analysis results showing that tau pathology burden is predicted 
to be upstream of changes in proportions of Inh.3, Oli.1, Ast.4 and End.2. 
Colored by cell type, the arrow indicates the direction of change in proportion 
in association with cognitive decline and tangles burden. Full results are shown 
in Extended Data Fig. 8c. f, Mediation analysis results showing effect of changes 
in proportions of Inh.3, Oli.1, Ast.4 and End.2 on cognitive decline independent 
of tau pathology burden. Colors and arrows as in e. Full results are shown in 
Extended Data Fig. 8d. g, A scheme of our proposed model of multicellular 
communities of the aging DLPFC brain region and their associations with AD 
traits. Cellular networks (as in a), nodes colored by the community assignments. 
The statistically significant enriched associations to AD traits (hypergeometric  
P value) are marked next to the graph.
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Methods
Source of clinical, pathologic and omics data and ethics
Data were derived from subjects in one of two clinical-pathologic 
cohort studies of aging and dementia, the Religious Orders Study 
(ROS) or the Memory and Aging Project (MAP), collectively, ROSMAP8, 
both undergoing deep ante- and postmortem characterization. The 
ROS and MAP studies were approved by an Institutional Review Board 
of Rush University Medical Center and participants signed informed 
and repository consents to brain donation at the time of death and an 
Anatomic Gift Act.

The methods of assessing cognition and pathology have been 
extensively summarized in previous publications10,46–49. Briefly, cogni-
tive decline was determined based on the uniform structured annual 
cognitive assessment of ROSMAP participants10,46–49. Scores from 17 
cognitive performance tests were used to obtain a summary measure 
for global cognition. Cognitive decline is defined by person-specific 
random slopes of longitudinal modeling of global cognition with a 
mixed effects model, adjusting for age, sex and education50. The clinical 
diagnosis of AD at the time of death was determined by a neurologist 
specializing in dementia51, blinded to all neuropathologic data52, pro-
viding the most likely diagnosis as previously described in detail46,53,54. 
β-amyloid and tau pathology burdens were determined by quantifi-
cation and estimation of the burden of parenchymal deposition of 
β-amyloid and the density of abnormally phosphorylated tau-positive 
neurofibrillary tangle (tau pathology) levels present at death10,46–49, in 
eight regions of the brain: the hippocampus, entorhinal cortex, anterior 
cingulate cortex, midfrontal cortex, superior frontal cortex, inferior 
temporal cortex, angular gyrus and calcarine cortex. A pathologic 
diagnosis of AD was determined by a board-certified neuropatholo-
gist blinded to age and all clinical data55, based on the scores of Braak 
stage for severity of neurofibrillary tangles and CERAD (Consortium 
to Establish a Registry for Alzheimer’s Disease) estimates for burden 
of neuritic plaques, as previously described10,46–49.

In this study, we generated snRNA-seq profiles from 24 ROSMAP 
participants profiled (12 male and 12 female, average age: 87.9) from 
four groups (Supplementary Table 1): (1) a reference group of NCI (no 
cognitive impairment) with minimal AD pathology; (2) a high-resilience 
group of NCI with pathologic AD; (3) an AD group with both clinical AD 
dementia and pathologic AD; and (4) a low-resilience group of individu-
als diagnosed with clinical AD dementia with minimal AD pathology. We 
included only samples that had RIN > 5 with postmortem interval < 24 
hours, and that had bulk RNA-seq in a previous study1 and whole-genome 
sequencing data8–10. In addition, we used bulk RNA-seq data of 638 ROS-
MAP participants1 (230 men and 408 women, average age: 88.69315 (95% 
confidence interval, 88.17613 to 89.21017), including the 24 individu-
als). Finally, we used a published proteomic dataset of 400 ROSMAP 
participants30 (119 men and 281 women of advanced age). In addition, 
we used for validations published bulk RNA-seq data of 106 men and 
woman of advanced age from an independent cohort from the MSBB34.

Data randomization and sample size
In total, 638 bulk RNA samples and 400 proteomics samples were 
randomly selected in regard to AD traits, while the 24 snRNA-seq sam-
ples were chosen based on their AD traits. No statistical methods were 
used to predetermine sample sizes but our sample sizes are similar to 
those reported in previous publications1,30,34. For bulk RNA1 and bulk 
proteomics30 datasets, the individuals were randomly assigned into 
batches and included both men and women. The snRNA-seq data were 
divided into four batches designed to be balanced for pathological 
and clinical diagnosis and sex. Samples size was based on availability 
and no statistical methods were used to determine the dataset sizes.

Single-nucleus isolation and RNA-seq
DLFPC tissue specimens were received frozen from the Rush Alz-
heimer’s Disease Center. Working on ice throughout56, we carefully 

dissected them to remove white matter and meninges (presence varied 
between specimens). Then, 50–100 mg of tissue was gently Dounced 
with Pestle A followed by 25 times with Pestle B (Sigma, cat no. D8938) 
in 2 ml of NP40 Lysis Buffer (0.1% NP40, 10 mM Tris, 146 mM NaCl, 
1 mM CaCl2, 21 mM MgCl2, 40 U ml−1 RNAse inhibitor (Takara, 2313B)). 
Tissue was transferred to a 15-ml conical tube, adding 3 ml of PBS mix 
(PBS + 0.01% BSA (NEB, B9000S) and 40 U ml−1 RNAse inhibitor), then 
centrifuged immediately (swing bucket rotor at 500g for 5 min at 
4 °C). The supernatant was removed, and the nuclei pellets were resus-
pended in 500 ml of PBS mix. Nuclei were filtered through 20-µm 
preseparation filters (Miltenyi, 130-101-812) and counted using the 
Nexcelom Cellometer Vision (Nexcelom, CHT4-SD100-002). Next, 
20,000 nuclei in around 15–30-µl volume were run on the 10X Single 
Cell RNA-Seq Platform using the Chromium Single Cell 3′ Reagent 
Kits v2 (10x GENOMICS PN-120237). Libraries were made following 
the manufacturer’s protocol for v2 library construction. The ampli-
fied whole transcriptome (WTA) was diluted to <8 ng ml−1 for library 
construction, and amplified complementary DNA and libraries were 
assessed by Qubit HS DNA assay (Thermo Fisher Scientific, Q32851) 
and BioAnalyzer (Agilent, 5067-4626). Libraries from four channels 
were pooled and sequenced on one lane of an Illumina HiSeqX by the 
Broad Institute Genomics Platform, for a target coverage of around 
1 million reads per channel.

Preprocessing of snRNA-seq data
De-multiplexing, alignment to the hg38 transcriptome and unique 
molecular identifier-collapsing were performed using the Cell-
ranger toolkit (v.2.1.1, chemistry V2, 10X Genomics, for Chemistry 
Single Cell 3′), and run using cloud computing on the Terra platform 
(https://Terra.bio). We used a genome reference with premessen-
ger RNA annotations, accounting for exons and introns. Technical 
artifacts of ambient RNA were corrected by the CellBender package 
(remove-background function, with 300 epochs). We excluded nuclei 
with fewer than 400 detected genes and genes with less than 15 reads 
across all nuclei. Gene counts were log-normalized per nucleus (Nor-
malizeData function from the Seurat57 package v.4, natural-log of 
the read counts divided by the total reads and multiplied by 10,000), 
and scaled and centered (ScaleData function) across the dataset, 
after selection of variable genes (FindVariableFeatures, selection.
method = ‘vst’).

Dimensionality reduction, clustering and quality controls
Principal component analysis (with RunPCA function, npcs = 50) was 
run on the scaled expression matrix. The significant principal com-
ponents (selected by the standard deviation of each principal com-
ponent) were embedded using Uniform Manifold Approximation 
and Projection (UMAP)58. Clustering was performed by the Louvain 
community detection algorithm over a k-nearest neighbors graph of 
nuclei59 (FindNearestNeighbors and FindClusters functions). Clusters 
were manually matched to cell types based on the expression of known 
marker genes15,56.

Doublet cells removal. For doublet detection and elimination, 
we ran DoubletFinder60 to score nuclei as doublets. We excluded 
high-confidence doublet cells. Next, we clustered our data at high 
resolution to identify and exclude small doublet clusters. A doublet 
cluster is defined as a cluster with over 70% of doublet nuclei, which 
we validated as also coexpressing markers of least two different cell 
populations. The automatic doublet analysis aided the identifica-
tion of the doublet cluster and of individual doublet cells. Removal 
of nuclei with high content of cytoplasmic and low nuclear RNA: 
clusters with low nuclear RNA content and high cytoplasmic RNA 
content were removed. Cytoplasmic/nuclear RNA is defined as the 
top 400 differentially expressed genes between nuclear content and 
cellular content14.
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Subclustering analysis and annotations
For cell types with sufficient numbers of cells, we performed subclus-
tering analysis to reveal additional diversity: astrocytes, microglia, 
endothelial, inhibitory neurons and excitatory neurons (oligodendro-
cytes were analyzed by topic modeling). The pipeline described for all 
cells was applied separately to each cell type, with minor differences: 
the number of significant principal components used was adjusted per 
cell type (30 principal components for astrocytes and excitatory neu-
rons, 25 for inhibitory neurons and 20 for microglial and endothelial 
cells). The resolution of the clustering ranged from 0.1 to 0.6. Addi-
tional filtration of low-quality nuclei was done at the cell type level, 
to overcome the differences in RNA content between brain cell types. 
Glial and endothelial subset annotations were done by known marker 
genes and profiles3,5–7,15. Inhibitory and excitatory neuronal subtype 
annotations and cortical layer were further predicted by a regression 
model (SingleR package) trained on a published cortical snRNA-seq 
dataset12 (using the ‘fine tuned’ label12 to determine the best cortical 
layer fit), and applied to our neuronal snRNA-seq data. Annotations 
were based on the highest scoring label, and validated by expression 
of known markers12,56.

To validate that subclusters were not driven by batch, RIN or sex, 
we examined the distribution of each covariate within the subcluster. 
Next, for astrocytes, microglia and endothelial cells separately, we 
regressed the effect of each covariate independently during the scaling 
of the expression matrix (Seurat ScaleData function), and followed the 
same downstream clustering analysis pipeline as described, match-
ing the number of clusters in the standard analysis. The two sets of 
cluster assignments, the original and the regressed, were compared 
by the pairwise Jaccard index (cell overlap between clusters), showing 
one-to-one match between the two sets of clusters.

Topic modeling for oligodendrocyte cells
We modeled the cell state diversity in oligodendrocyte cells by topic 
modeling19–22, using Latent Dirichlet Allocation. Topic modeling was 
performed on the normalized data matrix, reduced to the oligoden-
drocyte variable genes. We used the CountClust package in R, which 
calculated the score of membership for four topics (using the GoM 
function, which was run on the scaled expression matrix with tolerance 
0.01). The results were robust to the choice of topic numbers and toler-
ance levels, yet we favored a small number of topics given the number of 
cells and samples in our data. We used the Kullback–Leibler divergence 
of gene weights over topics to select genes highly associated with each 
topic (using the ExtractTopFeatures function with default parameters), 
and excluded genes negatively correlated to the related topics.

Density plots to visualize cellular populations and genes
To visualize cell attributes in dense two-dimensional graphs, we plot-
ted the weighted average value of the attribute in the neighboring 
cells using the Gaussian kernel adjacencies in the two-dimensional 
embedding (Gauss kernel from the ‘KLRS’ R package, with sigma = 1.5). 
We filtered out cells with an adjacency measure >0.0005. We used this 
approach to plot the expression of marker genes and scores of the four 
topics of oligodendrocytes.

Differential expression and pathway analysis
We calculated the differentially expressed genes within each cluster 
within each cell type by the MAST (Model-based Analysis of Single 
Cell Transcriptomics) method, and corrected for multiple compari-
sons using Bonferroni correction (FindAllMarkers function, test.
use = ‘MAST’). We defined differential genes as those with Q value 
threshold <0.05, expressed in at least 10% of nuclei in the given cluster, 
and with at least 0.25-fold average expression (compared with cells 
outside of the cluster). To calculate differentially expressed genes in oli-
godendrocytes, we used nuclei that scored more than 0.5 to one of the 
topics and addressed it as a regular hard assignment. The differential 

expression signatures were tested for enriched pathways and gene 
sets (compareCluster function in the clusterProfiler package in R), and 
corrected for multiple comparisons by FDR, using FDR Q < 0.05 for 
significance. Gene sets were taken from the KEGG and Gene Ontology 
(GO) resources61.

Shared pathways analysis. Shared enriched pathways among a group 
of cell subsets were defined as statistically significant enriched path-
ways in the independent analysis of at least three subsets. To overcome 
the redundancy within the pathways databases, the shared enriched 
pathways were clustered by hierarchical clustering (pheatmap func-
tion) using the pairwise Pearson correlation distance computed over 
the gene space. Each pathway was represented by the differentially 
expressed genes linked to it. Pathway clusters were named manually.

Comparison of clusters with published datasets
We compared our cell clusters with four recently published human 
brain snRNA-seq datasets3,4,6,25, and with single-cell RNA-seq of live 
microglia cells from fresh autopsy and surgically resected human 
brain tissue7, by Canonical Correlation Analysis (CCA) (Seurat, with 
3,000 genes and 20 canonical components). We predict the class 
membership of the CCA-transformed snRNA-seq nuclei profiles by a 
naive Bayes classifier trained on the other dataset in CCA space, and 
each nucleus cluster was assigned a published cluster by the maximum 
prediction value.

CelMod: estimating cells and topics proportions in bulk data
We developed a regression-based consensus model (CelMod) to extend 
our snRNA-seq-derived cell subset estimates to bulk data, leveraging 
matched bulk and snRNA-seq data from the same 24 donors.

We train the regression model as follows: (1) filter genes to include 
only those that have at least 100 counts across all nuclei of the cell 
type of interest, and a mean counts per million value > 10; (2) perform 
a linear regression on each gene separately for each cell cluster of 
interest, using its expression as the dependent variable and the pro-
portion of that cluster in each snRNA-seq sample in the training set as 
the independent variable; (3) for each gene, use the regression model 
to calculate the predicted proportion of each cell type, normalizing 
their sum to 1; (4) rank genes by the 90th percentile of the absolute 
value of the error between predicted and training proportions, for each 
cell type; and (5) select the number of top-ranked genes (constant for 
each cell cluster) to use for deconvolving a new bulk RNA-seq sample; 
this number of genes, the only tunable parameter, is selected based on 
cross-validation, as described below.

CelMod identifies a large set of informative genes for each cell 
subset, ensuring that a small set of overlapping gene markers from dif-
ferent cell groups are not skewing the proportion estimates for broad 
cell classes as well as for subsets within each cell class. To determine 
the optimal number of genes to use for the prediction, we use fivefold 
cross-validation: 80% train and 20% validation set. The validation sets 
are mutually exclusive, such that after five runs, the proportions in 
every bulk sample have been ‘predicted’ once. This cross-validation 
is run using 3 to 100 ranked genes (from step 3 above), selecting the 
optimal gene number, which minimizes the mean of the 90th percentile 
errors for each cell group in all samples, and applied for deconvolution 
predictions in the larger bulk RNA-seq dataset.

We run the algorithm iteratively, starting at the ‘top level’, with the 
broad cell classes (glutamatergic neurons, GABAergic neurons, astro-
cytes, oligodendrocytes, oligodendrocyte precursor cells, microglia, 
endothelial cells and pericytes), and then again for the subtypes within 
each of the cell classes. For the broad cell classes, the proportions are 
based on the total nuclei per sample. For the subtypes/subsets, the pro-
portions are normalized to the total nuclei from the broad class of inter-
est. This allows us to directly model both the overall and subtype-level 
compositions of the bulk tissue, especially for cell types that comprise a 
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small fraction of the overall population (such as endothelial and micro-
glial cells). For the oligodendrocyte signatures, which are modeled as 
topics instead of discrete clusters, we sum the weights for each given 
signature over all nuclei from a given sample, and then normalize these 
sums so that they add up to 1 for a given sample. This reflects a ‘propor-
tion of topic weights’ per sample, as opposed to a strict proportion that 
can be calculated for the discrete cell types. Finally, for microglia, we 
ensured the model training was robust, by only including donors with 
at least 25 total microglia.

The performance of this algorithm on the validation set (20% of the 
data, with fivefold cross-validation) is shown in Fig. 4c–f and Extended 
Data Fig. 6a–c, as well as the correlation structure between cell subsets 
in Fig. 5d,e and Fig. 6c.

We applied the inferred CelMod model to an independent exter-
nally published snRNA-seq dataset3 from 48 individuals of the pre-
frontal cortex (BA10 and not BA9 as our dataset), with matching bulk 
RNA-seq profiles. The data were downloaded and annotated using 
our higher-resolution cell clustering (compared with the published 
annotations), and RNA signatures and proportions were obtained for 
each of the clusters (as described above). We applied CelMod to the 48 
bulk RNA-seq samples with matching snRNA-seq data, as described, to 
estimate the proportions of cell types and subsets in the bulk samples, 
and these estimates were used to validate the accuracy of CelMod.

We applied the inferred CelMod model to an independent external 
dataset of 106 bulk RNA-seq profiles from a different independent 
cohort of aged men and women from the MSBB34. The samples were 
preprocessed similarly to the ROSMAP dataset1, then we applied the 
CelMod model learned on our snRNA-seq data to estimate the major 
cell types, cell subsets and topics proportions in each bulk sample. The 
cell subset estimates from this independent MSBB cohort were used to 
validate the associations of cell subset proportions to AD-associated 
traits and the correlation structure of cellular subsets. The MSBB trait 
analysis matched the ROSMAP analysis, except that for the MSBB 
cohort the CDR (Clinical Dementia Rating) measurement was used 
instead of the cognitive decline rate, and the Braak score was used 
instead of the tau tangles load.

We compared the performance of CelMod with three deconvo-
lution methods that use reference profiles of snRNA-seq clusters to 
estimate proportions in bulk data: DCQ, DeconRNAseq and dtangle, 
with standard parameters for each method. We ran each method to 
predict proportions of major cell classes and subclusters, and calcu-
lated Spearman correlations between the predicted proportions and 
the actual snRNA-seq-derived proportions.

Associating cell subsets and programs to AD-related traits
We analyzed three major pathological and cognition hallmarks of AD, 
collected for the ROSMAP cohorts: continuous measure of cognitive 
decline (the slope of the cognitive decline trajectory50) and continuous 
measures of tau tangle pathology density and β-amyloid burden (both 
averaged over multiple regions62), as detailed under Source of clinical, 
pathologic and omic data and ethics.

To test the statistical associations between AD phenotypes and 
proportions of cell types/subsets/topic models, we performed multi-
variable linear regressions, modeling cellular proportions as the out-
come, and phenotypes as the independent variable, adjusted for age, 
sex and RIN score as covariates, and corrected for multiple comparisons 
by FDR. The analysis was done for each trait separately across all cell 
subsets (five astrocytes, six endothelial subsets, seven GABAergic 
neurons, ten glutamatergic neurons, five microglia subsets and four 
oligodendrocyte topics).

Multicellular communities
To find co-occurring cellular populations across individuals, we identi-
fied cellular communities, defined as a set of cell subsets and expres-
sion programs that have coordinated variation of proportions across 

individuals (for topics we use the weights). We identified cellular com-
munities in the snRNA-seq dataset (n = 24 individuals) and the CelMod 
estimated proportions (n = 638 individuals), across six broad brain cell 
classes for which we had defined subsets or topic models (expression 
programs). To detect cellular communities, we followed these four 
steps: (1) Cellular proportions. Given a classification of single cells 
to subsets, we calculated per individual the proportion of each cell 
subset within each cell class (that is, out of the total number of cells in 
the cell class or sum of all topic weights). Next, we appended the cell 
subset proportions across all cell classes into a combined frequency 
matrix. For bulk data we used the estimated proportions by CelMod. (2) 
Correlation matrix. We calculated the pairwise Spearman correlation 
coefficient over the proportions of all cell subsets across individu-
als, clustered by hierarchical clustering (R pheatmap function with 
1-Pearson correlation distance). (3) Cellular network. We built a graph 
where each cell subset was a node, and edges connected every two 
nodes if their absolute pairwise Spearman correlation value was at least 
0.4 and P value < 0.05, and assigned a sign by the sign(R). The network 
layout was manually assigned over the igraph layout with positive edges 
(with layout = layout_with_fr), to maintain a common layout between 
the 24 and 638 derived networks. (4) Associating cellular communities 
to AD traits. To test the statistical significance of the association to 
AD traits (cognitive decline, tangles burden or amyloid burden), we 
calculated the connectivity score within three sets of nodes (nodes in 
the network): positively associated (FDR < 0.01, beta > 0), negatively 
associated (FDR < 0.01, beta < 0) or neutral (FDR > 0.01), to each trait. 
We defined the connectivity score for these sets of nodes in the network 
to be: the differences between the numbers of positive and negative 
edges divided by the total number of possible edges between them. To 
assess the statistical significance of high and low scores, we applied a 
permutation test on the subset labels within the network. The empiri-
cal P value is the proportion of permutations (of 10,000) that lead to 
a higher/lower score. Significant connected components associated 
with AD traits were termed communities.

Testing potential layer bias underlying the network analysis. Excita-
tory neuronal subsets largely formed two opposing independent con-
nected components in the graph, one consisting of upper cortical 
layer neuronal subsets (Exc.1, Exc.2, Exc.3, layers 1–4) and the other of 
lower layer neuronal subsets (layers 4–6). Given the intrinsic associa-
tion between pyramidal neuron subsets and cortical layers, we cannot 
completely exclude the possibility that this partition is driven by a 
dissection bias of the cortical layer proportions. Yet, we can exclude a 
dissection bias for all other cell subsets by comparing the correlation 
structures of two distinct groups: high levels of Exc.1 (>0.5, n = 267 
individuals) or low levels of Exc.1 (≤0.5, n = 371 individuals). Next, we 
calculated the pairwise Spearman correlation coefficients of all cell 
subsets separately for the two groups, showing low differences in cor-
relations between the groups, suggesting no dissection bias.

Comparison of the snRNA-seq network and the CelMod network. 
To compare the snRNA-seq network (24 individuals) and the CelMod 
estimated cellular network (638 individuals), we calculated the statisti-
cal significance of the similarity between the two pairwise correlation 
matrices. We performed 10,000 random permutations of the CelMod 
estimated proportions of cell subsets in 638 individuals, within each 
cell cluster (total proportions within cell type = 1). We calculated an 
empirical P value based on the Jennrich’s score45 (R cortest.jennrich 
function) similarity between the snRNA-seq correlation matrix and 
each permutated matrix. The nonpermutation matrix consistently got 
the lowest score compared with the permuted matrix, that is, P < 0.001.

Analysis of proteomic data
We used published shotgun bulk proteomic data from 400 aging 
participants, both men and women, from the ROSMAP cohort30, 
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with 196 individuals overlapping with the bulk RNA-seq dataset 
(log-normalized30 data). Protein markers of cell subsets of interest were 
used as validation for: (1) estimated proportions from bulk RNA-seq 
of cell subsets by CelMod (Fig. 4f and Extended Data Fig. 6d, using 
genes with matching RNA and protein profiles only); (2) associations 
between cell subset proportions and AD-associated traits (Fig. 4k); 
and (3) correlation structures between proportions of different cell 
subsets (Fig. 6c). In all analyses, we chose marker genes per snRNA-seq 
subset as differential genes with low expression outside of the subset, 
which were confidently measured in the proteomic dataset and had 
correlated bulk RNA and proteins levels. We excluded cell subsets 
lacking sufficient measured protein markers.

Immunohistochemistry and spatial transcriptomics
First, 6-µm sections of formalin-fixed paraffin-embedded tissue, 
obtained from Rush University Medical Center, from the frontal cor-
tex were stained with NEF (Sigma, N2912). Heated-induced epitope 
retrieval was performed using citrate (pH 6) in a microwave (800 W, 
30% power setting) for 25 min. The sections were blocked with block-
ing medium (3% BSA) for 30 min at room temperature, then incu-
bated with primary antibody anti-NEF prepared in 1% BSA overnight at 
4 °C. Sections were washed three times with PBS and incubated with 
fluochrome-conjugated secondary antibodies (Thermo Fisher) for 
1 h at room temperature. Anti-fading reagent with DAPI (P36931, Life 
technology) was used for coverslipping. For each subject, 30 images 
of cortical gray matter at ×20 magnification (Zeiss Axio Observer.Z1 
fluorescence microscope) were taken in a zigzag sequence along the 
cortical ribbon to ensure that all cortical layers were represented in 
the quantification in an unbiased manner. Dilutions: anti-NEF: 1/100; 
anti-GFAP: 1/300; anti-NeuN: 1/300. The acquired images were ana-
lyzed using CellProfiler and CellProfiler Analyst, developed by the 
Broad Institute. We estimated the proportion of a broad cell class or 
signature (neurons, microglia and GFAP+ astrocytes) from the images 
as the fraction of nuclei stained with the marker of interest (NeuN, IBA1 
or GFAP, respectively, for neurons, microglia and GFAP+ astrocytes) out 
of all nuclei stained by DAPI.

For spatial transcriptomics with Visium, the cerebral cortex 
and the underlying white matter of fresh frozen brain tissue were 
obtained from the New York Brain Bank for six aging individuals and 
dissected on dry ice. The samples from each subject were prepared 
into 10 × 10-mm2 size tissue in cryo embedding matrix (OCT), and 
sectioned at 10-µm thickness in duplicate onto a slide containing 
capture probes. Sections were fixed with cold 100% methanol for 
30 min and then stained with hematoxylin and eosin for 7 min at room 
temperature. Sections were scanned using a Leica microscope. After 
image capture, tissue sections were permeabilized to induce cDNA 
synthesis and a cDNA library was generated. The permeabilization time 
was optimized for the ST Visium platform and RNA quality, selecting 
sections with RIN > 7. Libraries were sequenced and aligned with the 
hematoxylin and eosin images using the Space Ranger software. The 
quantification and visualization of genes per spot was done using the 
Seurat package v.4.1.0.

Ligand–receptor analysis
We searched for ligand–receptor expression as an indication of sign-
aling within and between cellular communities, focusing on the cog-
nitive decline community (Inh.1, Inh.7, Oli.4, Ast.4, End.2 subsets) 
and the cognitive nonimpaired community (Inh.3, Oli.1, End.4, End.1, 
Ast.2 subsets). Ligand and receptor interactions were assembled from 
published resources37,38 and manually curated. We searched for statis-
tically significant expressed LRPs between pairs of cell subsets using 
CellPhoneDB 2.0 (ref. 39). Briefly, CellPhoneDB computes the aver-
age expression of an LRP within a pair of subsets and computes an 
empirical P value for the specificity of this interaction by permuting 
cell subset identity (1,000 times). Community-specific differential 

LRPs were defined as statistically significant LRPs where the ligand 
or the receptor was found to be differentially expressed within these 
subsets compared with all other cells of the same type (differentially 
expressed genes as defined). Strict community-specific LRPs were 
defined as community-specific LRPs where both the ligand and the 
receptor were differentially expressed (Extended Data Fig. 8a).

Next, we found the significant interacting pairs of cell subsets 
based on their overall numbers of LRP interactions, community-specific 
LRPs or strict community-specific LRPs. We calculated an empirical P 
value by a permutation test (10,000 permutations) randomizing the 
ligand and receptor cell subset assignments (maintaining the total 
number of interactions), and calculated the number of LRPs per cell 
subset pair.

Causal modeling between cell subtype proportions and AD 
endophenotypes
To assess plausible causal relationships among CelMod inferred cell 
subtype proportions and AD endophenotypes, we performed a series 
of linear and mediation analyses. We built our models on the known 
sequence of AD progression which starts with β-amyloid accumula-
tion, followed by tau aggregation and cognitive decline. We focused on 
cell subtypes associated with tau pathology that were also nominally 
associated with Aβ (P < 0.05).

We first tested the following linear model to assess the cell sub-
types’ positions in the causal chain including β-amyloid and tau, test-
ing different scenarios for the effect of each cell subset proportion: 
upstream of Aβ, between Aβ and tau, or downstream of tau:

(cell subset proportion) ≈

β0 + β1 × (Aβ) + β2 × (tau) + βX × (age, sex,RIN score)

If β1 is attenuated after including tau in the model, tau is either 
a confounder (independent effect on both β-amyloid and cell sub-
type proportion) or a mediator (relaying β-amyloid effect on cell 
subtypes)63. However, we assume that the direction of effect is from 
β-amyloid to tau based on the literature41,42, and thus tau will be inferred 
to be a mediator not a confounder, and cell subtype proportion will 
thus be inferred to be an outcome downstream of tau (the mediator). 
Since the first linear model indeed inferred the majority of subtype 
proportions to be downstream of tau, we therefore set the following 
mediation model in this case:

Mediator model ∶ (tau) ≈ β0 + β1 × (Aβ) + βx × (age, sex,RIN score)

Outcome model ∶ (subset proportion) ≈

β0 + β1 × (Aβ) + β2 × (tau) + βx × (age, sex,RIN score)

Here, β-amyloid is the independent causal variable, tau is the 
mediator and cell subtype proportion is the continuous outcome 
(dependent variable). We used R ‘mediation’ package64 to perform 
mediation analysis using this model. Mediated (indirect) effect, 
direct effect and proportion mediated were estimated using a non-
parametric bootstrap mediation model in this casewith 10,000 
simulations.

Similarly, for the cell subtype proportions that are likely down-
stream of tau, we assessed their impact on the downstream cognitive 
decline. Here, we assumed that cognitive decline is downstream of 
brain cell subtype proportion changes, as this is a more plausible direc-
tion of causation (rather than a model assuming that poor cognitive 
performance leads to brain cell subtype changes). Here, the mediation 
model we used is:

Mediatormodel ∶ (cell subset proportion) ≈

β0 + β1 × (tau) + βx × (age, sex,RIN score)
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Outcome model ∶ (cognitive decline) ≈

β0 + β1 × (tau) + β2 × (cell subset proportion) + βx × (age, sex,RIN score)

Here, tau is the independent causal variable, cell subset propor-
tion is the mediator and cognitive decline (slope) is the continuous 
outcome (dependent variable). Mediation analysis was performed 
using the same package and setting as above.

Finally, we estimated the joint effect of cell subtype proportions 
that mediate tau effect on cognition, comparing β1 (effect size of tau) 
of the following two linear models:

(cognitive decline)

≈β0+β1×(tau)+βy×(age, sex RIN score) ∶ β1=−0.040

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
snRNA-seq data were deposited in the AD Knowledge Portal (https://
www.synapse.org/#!Synapse:syn16780177) and processed data can be 
browsed online at: https://vmenon.shinyapps.io/rosmap_snrnaseq24/. 
The bulk RNA-seq dataset can be accessed through the Synapse data-
base (https://www.synapse.org/#!Synapse:syn3388564). The prot-
eomic dataset can be accessed through the Synapse database (https://
www.synapse.org/#!Synapse:syn17015098). All datasets are available 
for general research use according to the following requirements for 
data access and data attribution: https://adknowledgeportal.syn-
apse.org/#/DataAccess/Instructions. Other ROSMAP resources can 
be requested at the RADC Resource Sharing Hub at https://www.radc.
rush.edu. Source data are provided with this paper.

Code availability
The code for the CelMod deconvolution algorithm is available at: 
https://github.com/MenonLab/Celmod. Other code used within 
this study is available at: https://github.com/naomihabiblab/
HumanDLPFC24.
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Extended Data Fig. 1 | A cellular-molecular map of the human aging DLPFC: 
Quality controls. (a) High quality nuclei libraries generated across n = 24 post-
mortem independent samples of the DLPFC brain region of aging individuals. 
Nuclei (dots) colored by the doublet score (Methods). (b) Distribution of cell 
type frequencies across batches. The fraction of nuclei (y-axis) per cell type for 
each batch (x-axis, n = 3 batches). (c, d) Distribution of number of genes (c) and 
transcripts (d) across the 9 major cell types in the DLPFC. Violin plots showing 
the distribution per cell type (for n = 172,659 nuclei). (e, f) Distribution of cell 

type frequencies across sex (e, n = 24 independent samples, 12 per group) and 
archetypes of AD (f, n = 24, 6 per group). Boxplot showing the fraction of nuclei 
per cell type for males (blue, n = 12) and females (red, n = 12). For box plots, the 
bottom and upper borders show the first and third quartiles. The central line 
indicates the median. The whiskers are extended to the extrema values (without 
accounting for outliers). Dots show individual samples. Archetypes defined as  
in Fig. 1a, b.
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Extended Data Fig. 2 | Quality controls of neuronal subtypes and their 
cortical layer specificity. (a) Distinct expression of known and de novo marker 
genes in excitatory neuronal subtypes (top) and inhibitory neuronal subtypes 
(bottom) as assigned by our clustering analysis. Mean expression level in 
expressing cells (color) and percent of expressing cells (circle size) of selected 
markers in each neuronal subtype (rows) of marker genes. (b-c) Distribution 
of neuronal subtype frequencies across sex or batch for n = 24 independent 
sample. Boxplots showing the fraction of nuclei per neuronal subtype for sex 

(b, n = 12 per group) or batch (c, n = 8 per group): For box plots, the bottom and 
upper borders show the first and third quartiles. The central line indicates the 
median. The whiskers are extended to the extrema values (without accounting 
for outliers). Dots show outliers samples. (d) Marker genes of neuronal subtypes 
exhibit a spatial organization at distinct layers within DLPFC slices. Spatial 
transcriptomics across 6 slices from 3 individuals for five marker genes (RORB, 
TOX, CUX2, PVALB, SLC17A7). Note variable orientation of slices. Complementary 
images to Fig. 2c.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Quality controls of glial subsets. (a) Distribution of 
number of genes across microglia, astrocytes and endothelial clusters (denoted 
as subsets). (b, c) Distribution of non-neuronal subsets frequencies across sex 
and batch for n = 24 independent samples. Boxplot showing the fraction of 
nuclei per neuronal subtype for sex (b, n = 12 per group) or batch (c, n = 8 per 
group): For box plots, the bottom and upper borders show the first and third 
quartiles. The central line indicates the median. The whiskers are extended 
to the extrema values (without accounting for outliers). Dots show outlier 

samples. (d) RIN, sex and batch do not affect the sub-clustering of astrocytes, 
microglia and endothelial cells. Heatmaps of Jaccard score comparing overlaps 
of cells (color scales) between assignment of de-novo clusters after regression 
of the confounding variables from the expression matrix (rows) compared to 
the clusters in this study without such correction (columns) (Methods). (e) 
Endothelial subsets express unique markers. Dot plot of the mean expression 
level in expressing cells (color) and percent of expressing cells (circle size) of 
selected marker genes across endothelial subsets.
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Extended Data Fig. 4 | See next page for caption.



Nature Neuroscience

Resource https://doi.org/10.1038/s41593-023-01356-x

Extended Data Fig. 4 | Comparison of cell clusters to previous studies.  
(a) Clusters of microglia nuclei from snRNA-seq match published live microglia 
cell clusters from scRNA-seq. The proportions (color scale, scaled per column) 
of nuclei per cluster (columns) mapped to each scRNA-seq cell cluster according 
to the best prediction (rows, Methods). (b) Mean expression level in expressing 
cells (color) and percent of expressing cells (circle size) across cell subsets (rows) 

of previously described up-regulated and down-regulated genes in AD brains 
compared to healthy individuals, as defined by Zhou et al.6 for astrocytes (left) 
and oligodendrocytes (right). (c) Nuclear-derived model is consistent with 
earlier, lower-resolution models across different cell types. Heatmaps (color 
scale) of assignment of nuclei from 24 individuals (rows) to published subsets 
(Methods) from 4 previous snRNA-seq derived cortical models3,5,6,25.
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Extended Data Fig. 5 | Spatial transcriptomics of glial markers. Spatial transcriptomics of glial cell type and cell states markers, exhibit a spatial pattern across cortical 
layers matching DLPFC and white-matter anatomy. MBP (oligodendrocyte marker), GFAP (reactive astrocyte marker), ID3, CD44 (Ast.3 marker). Complementary to Fig. 3g.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | CelMod evaluation and comparison to other 
methods and datasets. (a, b) CelMod estimated proportions match snRNA-
seq measured proportions. Scatter plots of CelMod proportions (Y-axis) 
compared to snRNA-seq proportions (X-axis), for 6 major cell classes (a) and 
all cell subsets and topic models (b, colored by subset). Line: linear regression. 
Each point is a sample (n = 24 independent samples). (c) Validation of CelMod 
in an independent dataset. CelMod estimated proportions of cell subsets 
(Y-axis) compared to snRNA-seq proportions (X-axis) measured across n = 48 
independent samples of the prefrontal cortex Brodmann area 10 (Mathys et 
al.3). Each point is a single individual. Cell subset annotations are based on 
our cell atlas (Methods). R=Correlation. (d) Protein expression of selected 
markers reflect cell subsets abundance. Scaled protein expression levels 
(X-axis) compared to CelMod estimated proportions of the related cell subset, 
colored by the bulk RNA-seq (proteomics30 in n = 196 independent individuals 
with matching bulk RNA profiles). Each point is a single individual. Line: linear 
regression fit with confidence interval (grey). (e) CelMod outperforms previous 

methods. Spearman correlation scores (color scale) of the snRNA-seq measured 
proportions of each cell type (left) and cell subset (right), compared to the 
estimated proportions by CelMod and three previous models. (f) Correlations 
between AD traits within our data. Pairwise correlations (color scale) of the  
three traits across n = 638 independent individuals. (g) Measured proportions  
of cellular subsets from snRNA-seq in n = 24 individuals correlate with AD 
pathology and cognitive decline. Correlation (color scale) of the proportions of 
each cell subset (columns) to AD-traits (rows). The proportions are calculated 
over the total number of nuclei per individual (n = 24) within each cell.  
(h) Cellular proportions associations to AD-ranking in the independent MSBB32 
cohort matches the ROSMAP1 cohort. Association scores −log(FDR) × sign(β), by 
multivariable linear regression) of proportions of cell subsets to two measures 
of AD ranking: BRAAK stage (tangles load) and the CDR (level of cognitive 
decline), in n = 106 independent samples32 (Methods). Cell subsets colored by 
the statistical significance of associations to the cognitive decline rate in the 
ROSMAP cohort1 (n = 638).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Evaluation of multi-cellular communities. (a) Similar 
structure of coordinated changes between proportions of cell subsets and 
neuronal subtypes across individuals found in two independent cohorts. 
Pairwise Spearman correlation coefficients of the proportions of cell states 
and subtypes across individuals estimated by CelMod in bulk RNA-seq data of 
ROSMAP1 (left) and MSBB32 (right) cohorts. Bottom: Correlation between the 
pairwise association pattern of the ROSMAP and the MSBB cohorts per cell 
subset. (b) A network of cellular subsets reveals coordinated variation across 
individuals in multiple cell types. Network of coordinated and anti-coordinated 
cell subsets (nodes). Edges between pairs of subsets with statistically significant 
correlated proportions across individuals (r > 0.4, p-value threshold=0.05, 
solid red line) or anti-correlated (r < −0.4, dashed blue line) based on snRNA-seq 
proportions (n = 24 independent samples, Spearman correlation, two sided, not 
adjusted for multiple comparison). Celmod based network in n = 638 individuals 

in Fig. 6b. Nodes are colored by the cell type and numbered by the subset as in 
Fig. 2a and Fig. 3a, d, h). (c) Coordinated changes in proportions of cell states 
and subtypes across individuals is independent of the cortical layer, except for 
excitatory neurons. Pairwise Spearman correlation coefficient of the CelMod 
proportions of all cell subsets and neuronal subtypes across individuals with low 
levels of Exc.1 (n = 371 individuals, left) or high levels of Exc.1 (n = 267 individuals, 
middle). Right: The differences in pairwise correlations between the Exc.1-
high and Exc.1-low groups of individuals. Showing the partition mainly affects 
excitatory neurons (red). (d) Shared pathways within the cognitive non-impaired 
community. Enriched pathways (hypergeometric test, FDR q-value < 0.05, blue) 
in up-regulated genes for each cell subset within the cognitively non-impaired 
community (End.1, Oli.1, Ast.2, and Inh.3). Displaying shared enriched pathways 
between at least three subsets.
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Extended Data Fig. 8 | Signaling within and between multi-cellular 
communities and causal modeling. (a) Cell subsets positively associated 
with cognitive decline have an increased expression of ligand-receptor pairs 
compared to the negatively associated subsets. For each pair of cell subsets 
showing the number (color scale) of ligand-receptor pairs (LRP, row: ligand, 
column: receptor) where both the ligand and the receptor are differentially 
expressed in the relevant subsets. Top and side bar marking: subsets positively 
(purple) or negatively (turquoise) associated with cognitive decline, and the 
total number of ligands and receptors expressed (color scale). (b) Expression of 

the HLA-A - APLP2 ligand-receptor pair across subtypes of different cell types. 
Dot plot of the mean expression level in expressing cells (color) and percent of 
expressing cells (circle size) of HLA-A and of APLP2 across subsets of selected 
cell types. (c) Mediation analysis results showing tangle pathology burden (tau) 
is predicted to be upstream of changes in proportion of Inh.3, Oli.1, Oli.2, Ast.4, 
and End.2, but not Inh.2. (d) Mediation analysis results showing partial effect 
of changes in proportion of Inh.3, Olig.1, Ast.4, and End.2 on cognitive decline 
independent of tau pathology burden.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Immunofluorescence images were captured with Zeiss Axio Imager

Data analysis Images were analyzed using our automated image processing pipeline, which is based on CellProfiler and CellProfiler Analyst and includes 

algorithms for cell identification and segmentation, intensity measurement and morphologic feature extraction 

Data analysis of the single-nuclei RNA sequencing was done in R 4.0.2 with publicly available packages, including :KLRS, pheatmap, mediation. 

We used the Seurat package (with version 4.1.0), CountClust (1.20.0), DoubletFinder(2.0.3), singleR(1.6.1), CellPhoneDB (2.0), CellBender 

(0.2.0), ClusterProfiler(4.0.5), igraph (1.2.6), DCQ (v1), CountClust (1.20.0), DeconRNAseq (1.42.0), dtangle (v1). Cellranger (v 2.1.1,v2 

chemistry), Space Ranger (v 2.0.0). 

The code for the CelMod deconvolution algorithm is available at: https://github.com/MenonLab/Celmod.  

Other code used within this study is available at: https://github.com/naomihabiblab/HumanDLPFC24.  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

snRNA-seq data was deposited in the SYNAPSE database (https://www.synapse.org/#!Synapse:syn16780177) and processed data can be browsed online at: https://

vmenon.shinyapps.io/rosmap_snrnaseq24/. The bulk RNA-seq dataset can be accessed through the SYNAPSE database (https://www.synapse.org/#!

Synapse:syn3388564). The proteomic dataset can be accessed through the SYNAPSE database (https://www.synapse.org/#!Synapse:syn17015098). All datasets are 

available for general research use according to the following requirements for data access and data attribution: https://adknowledgeportal.synapse.org/#/

DataAccess/Instructions.Metadata of ROSMAP participants can also be requested at the RADC Resource Sharing Hub at https://www.radc.rush.edu.
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Sample size The main dataset of snRNA-seq consisted of 24 individuals that span different AD phenotypes  and were chosen to represent a span of 

pathological and clinical states. 638 bulk RNA samples and 400 proteomics samples were randomly selected in regard to AD traits, while no 

statistical methods were used to predetermine sample sizes, yet our sample sizes are similar to those reported in previous publications, which 

found statistically significant associations to disease traits. An additional cohort of 106 individuals profiled by bulk RNA-seq was used as a 

second validation given the lower number of samples within this independent cohort.

Data exclusions No samples were excluded from the analysis. Nuclei were filtered out from downstream analysis after identification of doublets or low quality 

cells.

Replication Within each dataset, samples were biologically independent, as they were taken from different individuals (n=24 for the snRNA-seq, n=638 

and n=106 for bulk RNA-seq cohorts, n=400 for the proteomic cohorts). Each biological finding was confirmed across multiple indepedent 

samples (individuals), different cohorts and data modalities. 

Randomization in the bulk RNAseq and proteomics batches were randomly assigned. The 3 experimental batches of the snRNA-seq included individuals from 

the different pathological conditions and sex. The potential batch effect was later tested and we found that it did not affect our cell 

annotations or any of our findings.

Blinding All the datasets collections were blind to the AD phenotypes, age and sex.  

The majority of the analysis steps of the single nuclei RNA-seq data, bulk RNA-seq and proteomics was done blindly to the different AD 

phenotypes and the metadata (sex, age). Specifically for the single nuclei RNA-seq  - all analysis steps were blind to phenotypes including: 

clustering, detection of differentially expressed genes, marker genes and expression programs by topic modeling, cell type identification and 

frequency assessments of cell subsets. Community detection  and ligand-receptor analysis was also blind to phenotypes.  The trait 

associations and the mediation analysis used the phenotype information.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Antibodies

Antibodies used IBA1 (WAKO, 019-19741), GFAP (DAKO, GA52461-2), NEUN (Millipore Sigma, MAB377), NEF (Millipore Sigma, N2912-200UL). 

Fluochrome: for NEF and NeuN: Alexa Fuor 488 donkey anti-mouse (ref: A21202). For GFAP: Alexa Fuor 488 donkey anti-rabbit (ref: 

A21206). Dilution: anti NEF: 1/100. Anti-GFAP: 1/300. Anti NeuN: 1/300.

Validation IBA1: the antibody is widely referenced in scientific literature (Ziehn, Marina O. Journal of Neuroscience, 2012; Diana K. Franco-

Bocanegra, Acta Neuropathol Commun., 2019; Imran Noorani, J Pathol Clin Res, 2015). This antibody is specific to microglia and 

macrophages and does not cross react with neurons or astrocytes. GFAP: The specificity of the antibody was confirmed by DAKO with  

indirect ELISA. It was reported that the antibody shows no reaction with human plasma and cow serum. In crossed 

immunoelectrophoresis using 50 µL antibody per cm2 gel area, no reaction with 2 µL human plasma and 2 µL cow serum is observed. 

The antibody shows one distinct precipitate (GFAP) with cow brain extract. NEUN: the specificity of the antibody was validated by 

Sigma millipore. Immunoreactivity is seen as nuclear staining in the neurons in the granular layer. The antibody is widely referenced 

in scientific literature (Mao, S, Front Neuroanat, 2016; Krzisch, M,  Brain Struct Funct, 2015). NEF: The specificity of the antibody was 

validated by Sigma-Aldrich by Immunoblotting using rat brain extract. Only specific bands at 160 KDa and 200 KDa were detected. 

This antibody is widely referenced (Noorani, I, J Pathol Clin Res., 2015; Schuster, A, J Cell Mol Med, 2014). 

Human research participants

Policy information about studies involving human research participants

Population characteristics Post-mortem brains of aging individuals across a range of cognitive healthy and advanced Alzheimer's. 230 men and 408 

women, average age: 88.69315, CI[88.17613 89.21017].

Recruitment Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP)

Ethics oversight The ROS and MAP studies were approved by an Institutional Review Board of Rush University Medical Center and participants 

signed informed and repository consents to brain donation at the time of death and an Anatomic Gift Act.

Note that full information on the approval of the study protocol must also be provided in the manuscript.


